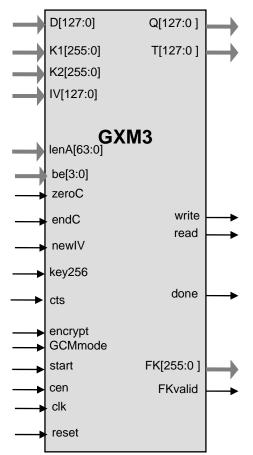


P1619 / 802.1ae (MACSec) GCM/XEX-AES Core


## **General Description**

LAN security standard IEEE 802.1ae (MACSec) uses AES cipher in the GCM mode, while the disk/tape encryption standard IEEE P1619 uses the XEX mode. Since GCM and XEX share some of their basic components, a combo GCM/XEX core is not much larger than a dedicated core for either of the modes.

The GXM3 core is tuned for mid-performance P1619 and 802.1ae applications at the data rates of 2-3 Gbps and higher. The core contains the base AES core AES1 and is available for immediate licensing.

The design is fully synchronous and available in both source and netlist form.

## **Symbol**



#### **Key Features**

Small size: From 60K ASIC gates (at throughput of 18.2 bits per clock)

487 MHz frequency in 90 nm process

Easily parallelizable to achieve higher throughputs

Completely self-contained: does not require external memory. Includes encryption, decryption, key expansion and data interface

Support for Galois Counter Mode Encryption and authentication (GCM) and XEX mode per P1619

Cipher Text Stealing (CTS) mode included

Flow-through design

Test bench provided

## Applications

IEEE 802.1ae

LAN switches, routers, NICs

• IEEE P1619

Hard drive and tape encryption, SAN, NAS



# **GXM3** Core

P1619 / 802.1ae (MACSec) GCM/XEX-AES Core

# **Pin Description**

| Name       | Туре   | Description                                                                                                                                                                                                     |  |  |
|------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Clk        | Input  | Core clock signal                                                                                                                                                                                               |  |  |
| Reset      | Input  | Core reset signal (active HIGH)                                                                                                                                                                                 |  |  |
| Cen        | Input  | Synchronous enable signal. When LOW the core ignores all its inputs and all its outputs must be ignored.                                                                                                        |  |  |
| GCMmode    | Input  | When HIGH, GXM3 mode is GCM, when LOW mode is XEX                                                                                                                                                               |  |  |
| Encrypt    | Input  | When HIGH, core is encrypting, when LOW core is decrypting                                                                                                                                                      |  |  |
| key256     | Input  | When HIGH, 256 bit AES key is used, when LOW – 128 bit AES key                                                                                                                                                  |  |  |
| endC       | Input  | (GCM mode only) Marks last data block                                                                                                                                                                           |  |  |
| zeroC      | Input  | (GCM mode only) Marks the block with zero length of plaintext/ciphertext field                                                                                                                                  |  |  |
| newIV      | Input  | (XEX mode only) Marks the last block of the data unit if followed immediately by the first block of the next data unit with different IV.                                                                       |  |  |
| cts        | Input  | (XEX mode only) Marks the last full 128-bit block of the data unit in case that the next block of this data unit is less than 128 bit (CTS mode)                                                                |  |  |
| Start      | Input  | HIGH level starts the input data processing                                                                                                                                                                     |  |  |
| Read       | Output | Read request for the input data byte                                                                                                                                                                            |  |  |
| Write      | Output | Write signal for the output interface                                                                                                                                                                           |  |  |
| D[127:0]   | Input  | <ul> <li>Input Data (other data bus widths are also available)</li> <li>For GCM, additional authenticated data (AAD, A), followed by the plain or cipher text</li> <li>For XEX, plain or cipher text</li> </ul> |  |  |
| K1[255:0]  | Input  | 256 bit or 128 bit AES key (128-bit key uses K1[255:128] pins)                                                                                                                                                  |  |  |
| K2[255:0]  | Input  | (XEX mode only) Tweak key (K <sub>2</sub> ) (128-bit key uses K2[255:128] pins)                                                                                                                                 |  |  |
| IV[127:0]  | Input  | (GCM mode only) Initial counter value (Y <sub>0</sub> , IV    0 <sup>31</sup> 1)                                                                                                                                |  |  |
| lenA[63:0] | Input  | (GCM mode only) Length of additional authenticated data in bits                                                                                                                                                 |  |  |
| be[3:0]    | Input  | Byte length of the last data block in bytes minus 1                                                                                                                                                             |  |  |
| FK[255:0]  | Output | 256 bit or 128 bit final round key (128-bit key uses FK[255:128] pins)                                                                                                                                          |  |  |
| FKvalid    | Output | HIGH when FK is valid                                                                                                                                                                                           |  |  |
| Q[127:0]   | Output | Output plain or cipher text                                                                                                                                                                                     |  |  |
| T[127:0]   | Output | (GCM mode only) Computed MAC (tag, T)                                                                                                                                                                           |  |  |
| Done       | Output | HIGH when data processing is completed                                                                                                                                                                          |  |  |



# **Function Description**

The Advanced Encryption Standard (AES) algorithm is a new NIST data encryption standard as defined in the <u>http://csrc.nist.gov/publications/fips/197/fips-197.pdf</u>.

The GXM3 implementation fully supports the AES algorithm for 128 and 256 bit keys in Galois Counter Mode (GCM) as required by the 802.1ae IEEE standard and in XEX mode as required by the IEEE P1619 standard.

The core is designed for flow-through operation, with input and output interfaces of flexible width. GCM additional authentication data precede the plaintext in the flow of data. GXM3 supports both encryption and decryption modes.



## **Synthesis Results**

#### **Device Area Utilization and Performance**

Representative area/resources figures are shown in the table below.

| Technology     | Area / Resources | Max Frequency | Throughput |
|----------------|------------------|---------------|------------|
| TSMC 0.13 μ LV | 70,543 gates     | 207 MHz       | 3.7 Gbps   |
| TSMC 0.09 μ LV | 85,961 gates     | 348 MHz       | 6.3 Gbps   |
| TSMC 0.09 μ LV | 119,493 gates    | 487 MHz       | 8.9 Gbps   |

Core can be easily synthesized for higher throughputs with slightly increased gate count. Few GXM3 cores can be easily paralleled to achieve 10 Gbps or higher throughput.

#### **Export Permits**

The core can be a subject of the US export control. It is the customer's responsibility to check with relevant authorities regarding the export or re-export of equipment containing the AES encryption technology. See the site of US Department of Commerce <u>http://www.bxa.doc.gov/Encryption/</u> for details.

#### Deliverables

#### **HDL Source Licenses**

- Synthesizable Verilog RTL source code
- Testbench (self-checking)
- Vectors for testbenches
- User Documentation

## **Contact Information**

IP Cores, Inc. 3731 Middlefield Rd. Palo Alto, CA 94303, USA Phone: +1 (650) 814-0205 E-mail: <u>info@ipcores.com</u> www.ipcores.com

#### **Netlist Licenses**

- Post-synthesis EDIF
- Testbench (self-checking)
- Vectors for testbenches
- Expected results