


General Description

The RC4 core implements the RC4 stream cipher in compliance with the ARC4 specification. It produces the keystream that consists of 8-bit words using a key with the length up to 256 bits.

The design is fully synchronous and available in both source and netlist form.

RC4 core is supplied as portable Verilog (VHDL version available) thus allowing customers to carry out an internal code review to ensure its security.

Symbol

RC4 Keystream Generator Core

Base Core Features

Keystream generation using the RC4 algorithm

Small size: from 20K ASIC gates

Satisfies the ARC4 specification

Capability to save and restore internal state using a data bus with parameterized width.

Outputs keystream in 8-bit data words

Uses a key of up to 256 bits

Completely self-contained: does not require external memory

Available as fully functional and synthesizable Verilog, or as a netlist for popular programmable devices and ASIC libraries

Deliverables include test benches

Applications

SSL/TLS accelerators

Pin Description

Name	Туре	Description
CLK	Input	Core clock signal
RESET	Input	Core reset signal
CEN	Input	Synchronous enable signal. When LOW the core ignores all its inputs and all its outputs must be ignored.
START	Input	When goes HIGH, a cryptographic operation is started
QVALID	Output	If HIGH, output data ready and valid on the Q bus
QREADY	Input	If HIGH, the external circuitry is ready to accept data from the Q bus
KEY[255:0]	Input	Encryption key (in the MSB)
KLEN[4:0]	Input	Encryption key length in bytes
MODE	Input	If LOW, START initiates key expansion and keystream generation If HIGH, START continues the keystream using the state read from the Sin pins
Q[7:0]	Output	Output keystream data (other bit widths available)
Sin[]	Input	Saved state input (configurable width)
Sout[]	Output	State output (configurable width)
Sactive	Output	If HIGH, Sout outputs valid state data. If HIGH and MODE is also HIGH, Sin shall have valid state

Function Description

An RC4 keystream generator produces a keystream in 8-bit increments per ARC4 (ARCFOUR) specification.

Operation

A rising input on the START port triggers the beginning of a cryptographic operation, using the either the KEY or Sin inputs to initialize the keystream. In any case the old state is evacuated via the Sout pins. The core then starts to output the keystream per RC4 algorithm.

External circuitry can also pause the core by deasserting the QREADY pin, and has to read the keystream value off the Q output if QVALID is asserted.

The core continues to produce the keystream as long as START is kept high. To throttle the output, also at any time the CEN input can be brought low to pause the core.

A cryptographic operation can be aborted at any time by lowering the START signal for at least one clock cycle.

RC4 Keystream Generator Core

Export Permits

See the IP Cores, Inc. licensing basics page, <u>http://ipcores.com/exportinformation.htm</u>, for links to US government sites and more details. An RC4-NLR version restricted to 56 bits of the key is available without any license requirements.

Deliverables

HDL Source Licenses

- Synthesizable Verilog RTL source code
- Testbench (self-checking)
- Test vectors
- · Expected results
- User Documentation

Contact Information

IP Cores, Inc. 3731 Middlefield Rd. Palo Alto, CA 94303, USA Phone: +1 (650) 815-7996 E-mail: info@ipcores.com www.ipcores.com

Netlist Licenses

- Post-synthesis EDIF
- Testbench (self-checking)
- · Test vectors
- Expected results