Introduction

The FFT1-32-512/4 core implements 32, 64, 128, 256, and 512 point FFT and IFFT in hardware that runs at the clock frequency four times higher than the input sampling frequency.

Features

- Supports 32/64/128/256/512-point complex FFT and IFFT and can switch dynamically
- Inputs and outputs data in the natural order
- Throughput of 1 sample (In-phase I + quadrature Q) per 4 clocks; no-gap processing of the input data
- Parameterized bit width.
- Test bench and bit-accurate model
- Available in ASIC and FPGA technologies
- Minimal gate count implementation
- Programmable inter-stage scaling register.

Applications

- Communication system
- Signal analysis

Symbol
FFT1-32-512/4 Core
32-512 Point Streaming FFT Core

Pin Description

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK</td>
<td>Input</td>
<td>Core clock signal</td>
</tr>
<tr>
<td>CEN</td>
<td>Input</td>
<td>Synchronous enable signal. When LOW the core ignores all its inputs and all its outputs must be ignored.</td>
</tr>
</tbody>
</table>
| MODE[3:0] | Input | Mode
- 0000 – complex-to-complex 32-bit FFT
- 0001 – complex-to-complex 64-bit FFT
- 0010 – complex-to-complex 128-bit FFT
- 0011 – complex-to-complex 256-bit FFT
- 0100 – complex-to-complex 512-bit FFT
- 1000 – complex-to-complex 32-bit IFFT
- 1001 – complex-to-complex 64-bit IFFT
- 1010 – complex-to-complex 128-bit IFFT
- 1100 – complex-to-complex 512-bit IFFT |
| START | Input | HIGH starting input data processing |
| READ | Output | Read request on the input interface |
| WRITE | Output | Write enable for the output interface |
| DI[], DQ[] | Input | Input In-phase and Quadrature Data |
| QI[], QQ[] | Output | Output In-phase and Quadrature Data |
| SCALE[8:0] | Input | Manual scaling selection (when block floating point option is not enabled) |

Memory Interface

The core requires four “duplex” memories (dual-port memories with one write and one read port). The depth of each memory is \(\frac{1}{2} \) of the maximum data block (256) and the width is one sample (for example, with 24-bit I and Q, each memory will be 256x48 bits).

Function Description

FFT1-32-512/4 can process single stream of 32/64/128/256/512 point FFT/IFFT with input and output data in natural order.

The FFT or IFFT radix operations start when START input is sampled high. The core will start reading the input data, asserting the READ signal each time it reads the data. The FFT data output will be streamed out after fixed latency. The core will indicate data output by asserting the WRITE output.

Core will continue to operate on incoming data stream block of 32/64/128/256/512 samples each while the START signal is high.

SCALE input allows setting of the inter-stage scaling for each of the 9 radix-2 FFT stages. A bit value of 1 in position N indicates that the input data of the stage N are scaled by a factor of 2.
Deliverables

- Synthesizable Verilog RTL source code
- Bit-accurate software model
- Simulation scripts
- Self-checking Test environment
 - Test-bench
 - Test-vectors
 - Expected results
- Synthesis scripts
- User Manual

Contact Information
IP Cores, Inc.
3731 Middlefield Rd.
Palo Alto, CA 94303, USA
Phone: +1 (650) 815-7996
E-mail: info@ipcores.com
www.ipcores.com